Exercise 9.1

Determine order and degree (if defined) of differential equations given in Exercise 1 to 10:

1.

+ sin (y''') = 0 Sol. The given D.E. is

 $+ \sin y''' = 0$

The highest order derivative present in the differential equation is order is 4.

and its

The given differential equation is not a polynomial equation in derivatives (. The term sin y''' is a T-function of derivative y'''). Therefore degree of this D.E. is not defined.

Ans. Order 4 and degree not defined.

2. y' + 5y = 0

Sol. The given D.E. is y' + 5y = 0.

The highest order derivative present in the D.E. is y' $\begin{tabular}{c} & \square \\ & \blacksquare \\ &$

so its order is one. The given D.E. is a polynomial equation in derivatives (y' here) and the highest power raised to highest order derivative y' is one, so its degree is one.

Ans. Order 1 and degree 1.

1 Class 12 Chapter 9 - Differential Equations

3. = 0 🛛 🖓 🖓 🖓 - 3s Sol. The given D.E. = 0.is The highest order derivative present in and its the D.E. is order is 2. The given D.E is a polynomial equation in derivatives and the highest power raised п п= 0. to highest order derivative one. Therefore degree of D.E. Sol. The given is 1. Ans. Order 2 and degree 1. = 0 ПП $\Box \Box + \cos \theta$ + cos 4. is D.E. is

The highest order derivative present in the differential equation

is

and its order is 2.

The given D.E. is not a polynomial equation in derivatives . (. (.

The term \cos

is a T-function of derivative

Therefore degree of this D.E. is not defined. Ans. Order 2 and degree not defined.

= cos 3x + sin 3x 5.

is

).

Sol. The given D.E.

The highest order derivative present in the D.E. is order is 2.

and its

The given D.E. is a polynomial equation in derivatives and the

highest power raised to highest order and degree 1.

its degree is 1. Ans. Order 2

Remark. It may be remarked that the terms $\cos 3x$ and $\sin 3x_{\text{present}}$ in the given D.E. are trigonometrical functions (but not T-functions of derivatives).

It may be noted that

 \square \square \square \square $_{\square}$ jis not a polynomial function of

derivatives.

6. $(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$ Sol. The given D.E. is $(y''')^2 + (y'')^3 + (y')^4 + y^5 = 0$(i) The highest order derivative present in the D.E. is y''' and its order is 3.

2

Class 12 Chapter 9 - Differential Equations

The given D.E. is a polynomial equation in derivatives y''', y'' and y' and the highest power raised to highest order derivative y''' is two, so its degree is 2.

Ans. Order 3 and degree 2.

7. y''' + 2y'' + y' = 0

Sol. The given D.E. is y''' + 2y'' + y' = 0. ...(i) The highest order derivative

present in the D.E. is y''' and its order is 3.

The given D.E. is a polynomial equation in derivatives y''', y'' and y' and the highest power raised to highest order derivative y''' is one, so its degree is 1.

Ans. Order 3 and degree 1.

8. y' + y = e

^x. ...(i) The highest order derivative present in

Sol. The given D.E. is y' + y = e

the D.E. is y' and its order is 1.

The given D.E. is a polynomial equation in derivative y'. (It may be ^xis

an exponential function and not a polynomial function

noted that e

but is not an exponential function of derivatives) and the highest power raised to highest order derivative y' is one, so its degree is 1.

Ans. Order 1 and degree 1.

9. $y'' + (y')^2 + 2y = 0$

Sol. The given D.E. is $y'' + (y')^2 + 2y = 0$(i) The highest order derivative present in the D.E. is y'' and its order is 2.

The given D.E. is a polynomial equation in derivatives y" and y' and the highest power raised to highest order derivative y" is one, so its degree is 1.

Ans. Order 2 and degree 1.

10.
$$y'' + 2y' + \sin y = 0$$

Sol. The given D.E. is $y'' + 2y' + \sin y = 0$(i) The highest order derivative present in the D.E. is y'' and its order is 2.

The given D.E. is a polynomial equation in derivatives y'' and y'. (It may be noted that sin y is not a polynomial function of y, it is a T-function of y but is not a T-function of derivatives) and the highest power raised to highest order derivative y'' is one, so its degree is one.

Ans. Order 2 and degree 1.

11. The degree of the differential equation

_____ +____

```
+ sin + 1 = 0 is
```

Π

(A) 3 (B) 2 (C) 1 (D) Not defined. 3

Class 12 Chapter 9 - Differential Equations

Sol. The given D.E. is

$$\Box \Box \Box = 1 = 0 ...(i)$$

This D.E. (i) is not a polynomial equation in derivatives.

 $\therefore \text{ Degree of D.E. (i) is not defined.}$ Answer. Option (D) is the correct answer. 12. The order of the differential equation $2x^{2}$ is + y = 0
(A) 2 (B) 1 (C) 0 (D) Not defined _3 Sol. The given D.E. is $2x^{2}$ + y = 0 The highest order derivative present in the differential equation

order is 2.

and its

is

Answer. Order of the given D.E. is 2.

Class 12 Chapter 9 - Differential Equations

Exercise 9.2

In each of the Exercises 1 to 6 verify that the given functions (explicit) is a x + 1 : y'' - y' =solution of the corresponding differential equation: 1. $y = e^{x} + 1 \dots (i)$ To prove: y given, by (i) is a solution of the D.E. y" Sol. Given: y = e-y' = 0...(ii) From (i), y' =x + 0 = e $x and y'' = e^{x} - e$ \therefore L.H.S. of D.E. (ii) = y'' - y' = e by x = 0 = R.H.S. of D.E. (ii) \therefore y given (i) is a solution of D.E. (ii). 2. y = $x^{2} + 2x + C : y' - 2x - 2 = 0$ Sol. Given: $y = x^2 + 2x + C$...(i) To prove: y given by (i) is a solution of the D.E. y' - 2x - 2 = 0...(ii) From (i), y' = 2x + 2: L.H.S. of D.E. (ii) = y' - 2x - 2= (2x + 2) - 2x - 2 = 2x + 2 - 2x - 2 = 0 = R.H.S. of D.E. (ii) \therefore y given by (i) is a solution of D.E. (ii). 3. $y = \cos x + C$: $y' + \sin x = 0$ Sol. Given: $y = \cos x + C$...(i) To prove: y given by (i) is a solution of D.E. y' $+\sin x = 0...(ii)$ From (i), $y' = -\sin x$ \therefore L.H.S. of D.E. (ii) = y' + sin x = - sin x + sin x

4

Class 12 Chapter 9 - Differential Equations

$$\therefore$$
 y given by (i) is a solution of D.E. (ii).

4. y = : v' =

Sol. Given: y = + ...(i) To prove: y given by (i) is a solution of D.E. y' =

• ...(ii)

From (i), $y' = {}^{+} = (1 + x^2)^{1/2}$ = $(1 + x^2)^{-1/2} (1 + x_2) = (1 + x^2)^{-1/2} \cdot 2x = {}^{+} \dots$ (iii) R.H.S. of D.E. (ii) = + = + + (By(i))00 0 0 = = пп = y' [By (iii)] = L.H.S. of D.E. (ii) \therefore y given by (i) is a solution of D.E. (ii). 5. $y = Ax : xy' = y (x \neq 0)$ Sol. Given: $y = Ax \dots (i)$ To prove: y given by (i) is a solution of the D.E. xy' $= y (x \neq 0)$...(ii) From (i), y' = A(1) = AL.H.S. of D.E. (ii) = xy' = xA= Ax = y [By (i)] = R.H.S. of D.E. (ii) \therefore y given by (i) is a solution of D.E. (ii). $(x \neq 0 \text{ and } x > y \text{ or } x < -y)$ Sol. Given: y = x6. $y = x \sin x : xy' = y + x$ $\sin x \dots (i)$ To prove: y given by (i) is a solution of D.E.

 $\begin{aligned} xy' = y + x - ...(ii) & (x \neq 0 \text{ and } x > y \text{ or } x < -y) \\ & \text{From (i), } \quad (=y') \end{aligned}$

 $= x (\sin x) + \sin x x = x \cos x + \sin x L.H.S.$ of

D.E. (ii) = $xy' = x (x \cos x + \sin x)$

R.H.S. of D.E. (ii) = y + x Putting

 $y = x \sin x \text{ from (i)},$ $= x^2 \cos x + x \sin x \dots (iii)$

 $= x \sin x + x = x \sin x + x = x \sin x + x$

= $x \sin x + x \cdot x \cos x$ = $x \sin x + x^2 \cos x = x^2 \cos x + x \sin x$...(iv) From (iii) and (iv), L.H.S. of D.E. (ii) = R.H.S. of D.E. (ii) \therefore y given by (i) is a solution of D.E. (ii).

> 6 Class 12 Chapter 9 - Differential Equations

In each of the Exercises 7 to 10, verify that the given functions (Explicit or Implicit) is a solution of the corresponding differential equation:

- 7. xy = log y + C : y' = $(xy \neq 1)$
- Sol. Given: $xy = \log y + C \dots (i)$ To prove that Implicit function given by (i) is a solution of the

D.E. y' =

...(ii)

Differentiating both sides of (i) w.r.t. x, we have v'

$$y' + 0$$

$$+ y(1) =$$

$$\Rightarrow xy' - = -y \Rightarrow y' \square \square \square = -y$$

$$\Rightarrow y' = -y \Rightarrow y'(xy - 1) = -y_2$$

$$\Rightarrow y' = - = - - -$$

which is same as differential equation (ii), i.e., Eqn. (ii) is proved. \therefore Function (Implicit) given by (i) is a solution of D.E. (ii). 8. y – cos y = x : (y sin y + cos y + x) y' = y

Sol. Given: $y - \cos y = x$...(i) To prove that function given by (i) is a solution of D.E. ($y \sin y + \cos y + x$) y' = y ...(ii) Differentiating both sides of (i) w.r.t. x, we have

$$\mathbf{y}' + (\sin \mathbf{y}) \mathbf{y}' = 1 \Rightarrow \mathbf{y}' (1 + \sin \mathbf{y}) = 1$$

Putting the value of x from (i) and value of y' from (iii) in L.H.S. of (ii), we have

L.H.S. =
$$(y \sin y + \cos y + x) y'$$

= $(y \sin y + \cos y + y - \cos y)$
+ = $(y \sin y + y)$
+ $(y \sin y - y)$
+ $(y \sin y$

Differentiating both sides of (i), w.r.t. x, $1 + y' = + y'_{y'}$

7 Class 12 Chapter 9 - Differential Equations $(1 + y')(1 + y^2) = y' \Rightarrow 1 + y^2 + y' + y'y^2 = y'$

Cross-multiplying

⇒ y' =

⇒ $y^2y' + y^2 + 1 = 0$ which is same as D.E. (ii). Function given by (i) is a solution of D.E. (ii).

10. y = , x ∈ (- a, a) : x + y

 $= 0 (y \neq 0)$

Sol. Given: y = -, $x \in (-a, a) \dots (i)$ To prove that function given by (i) is a

solution of D.E. x + y

= 0 ...(ii)

⊥...(iii)

From (i),

=

$$=(a^2-x^2)^{-1/2}(a_2-x^2)$$

Putting these values of y and

from (i) and (iii) in L.H.S. of (ii),

-(-2x) =

L.H.S. = x + y

= x + -

= x - x = 0 = R.H.S. of D.E. (ii).

 \therefore Function given by (i) is a solution of D.E. (ii).

11. Choose the correct answer:

The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0 (B) 2 (C) 3 (D) 4. Sol. Option (D) 4 is the correct

answer.

Result. The number of arbitrary constants $(c_1, c_2, c_3 \text{ etc.})$ in the general solution of a differential equation of nth order is n. 12. The number of arbitrary constants in the particular solution of a differential equation of third order are (A) 3 (B) 2 (C) 1 (D) 0. Sol. The number of arbitrary constants in a particular solution of a differential equation of any order is zero (0).

[. By definition, a particular solution is a solution which contains no arbitrary constant.]

 \therefore Option (D) is the correct answer.

8

Class 12 Chapter 9 - Differential Equations

Exercise 9.3

In each of the Exercises 1 to 5, form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

1. + = 1 Class 12 Chapter 9 - Differential Equations

- 9
- Sol. Equation of the given family of curves is $_{+}= 1 \dots (i)$ Here there are two arbitrary constants a and b. So we shall differentiate both sides of (i) two times w.r.t. x.

From (i), . 1 +

= 0 or = -

...(ii)

Again diff. (ii) w.r.t. x, 0 = -

Multiplying both = 0.

sides by - b, Which is

the required D.E.

Remark. We need not eliminate a and b because they have already got eliminated in the process of differentiation. 2. $y^2 = a(b^2 - x^2)$ Sol. Equation of the given family of curves is

 $y^2 = a(b^2 - x^2) \dots (i)$ Here there are two arbitrary constants a and b. So, we are to differentiate (i) twice w.r.t. x. From (i), 2y = a(0 - 2x) = -2ax. Dividing by 2, y = -ax...(ii)Again differentiating both sides of (ii) w.r.t. x, у + a (iii) = -a or yPutting this value of - a from (iii) in (ii), (To eliminate a, as b is already absent in both (ii) and (iii)), we have x or xy У + X or xy = 0. + X 3. $y = ae^{3x} + be^{-2x}$ Sol. Equation of the family of curves is $y = a e^{3x} + b e^{-2x}$...(i) Here are two arbitrary constants a and b. From (i), $= 3 a e^{3x} - 2 b e^{3x}$ $^{-2x}$...(ii) Again differentiating both sides of (ii), w.r.t. x, $= 9 a e^{3x} + 4 b e$ ^{-2x}...(iii)

Let us eliminate a and b from (i), (ii) and (iii).

Equation (ii) $-3 \times \text{eqn.}$ (i) gives (To eliminate a),

10 Class 12 Chapter 9 - Differential Equations

- 3y = - 5 be $^{-2x}$...(iv) Again Eqn. (iii) - 3 \times eqn (ii) gives (again to eliminate a)

-3

= $10 \text{ be}^{-2x}...(v)$ Now Eqn. (v) + 2 × eqn. (iv) gives (To eliminate b)

```
\begin{array}{c} +2 \\ \square - \square \square \\ \square \square = 10 \text{ be}^{-2x} - \\ 10 \text{ be}^{-2x} \end{array}
```

or

6y = 0

or - 3

-3

+2

which is the required D.E.

4. $y = e^{2x}(a + bx)$

Sol. Equation of the given family of curves is

6y = 0

 $y = e^{2x}(a + bx) \dots (i)$ Here are two arbitrary constants a and b.

From (i), or $+ e^{2x}$ (a + bx)

=

$$= 2 e^{2x}(a + bx) + e^{2x}$$
. b

or

 $= 2y + be^{2x}...(ii) \ (By \ (i))$ Again differentiating both sides of (ii), w.r.t. x

= 2

 $+\,2\,be^{2x}...(iii)$ Let us eliminate b from eqns. (ii) and (iii), (as a is already absent in both (ii) and (iii))

From eqn. (ii)

 $\label{eq:2} - 2y = b e^{2x}$ Putting this value of $b e^{2x}$ in (iii), we have

+ 2

= 2 = 2

-4 or

$$+ 4y = 0$$

2

which is the required D.E. ^x(a cos x + b sin x)

5. y = e

Sol. Equation of family of curves is

$$x(a \cos x + b \sin x) \dots (i) =$$

÷

0

a	i
c	n
0	х
s)
X	+
+	e
b	x
s	$(-a \sin x + b \cos x)$ 11

Class 12 Chapter 9 - Differential Equations

or

 $x(a \cos x + b \sin x) + e$ $= e \qquad x(-a \sin x + b \cos x) \dots (ii)$ $x(-a \sin x + b \cos x) \qquad (By (i))$ or = y + e

Again differentiating both sides of eqn. (ii), w.r.t. x, we have

= = 2 x($x(-a \sin x + b \cos x) + e$ <u>с</u> – е $a\cos x - b\sin x$) x $(a \cos x + b \sin x)$ (By (ii)) + e or = (By (i)) or -y-y-2+ 2y = 0 which is the required D.E. or

6. Form the differential equation of the family of circles touching the

y-axis at the origin.

Sol. Clearly, a circle which touches y-axis at the origin must have its centre on x-axis.

. [..

x-axis being at right angles to tangent y-axis is the normal or line of radius of the circle.]

 \div The centre of circle is (r, 0) where r is the radius of the circle.

 \therefore Equation of required circles is

$$\begin{aligned} & -\beta)^2 = r^2] \text{ or } x^2 + r^2 - 2rx + \\ & (x-r)^2 + (y-0)^2 = r^2 [(x-\alpha)^2 + (y-\alpha)^2 + ($$

or x^2 + y^2 = 2rx ...(i) where r is the only arbitrary constant.

Differentiating both sides of (i) only once w.r.t. x, we have 2x + 2x + x

2y

= 2r ...(ii)

To eliminate r, putting the value of 2r from (ii) in (i),

r (.0)**r**C

Multiplying by –

 $\mathbf{x}_2 + \mathbf{v}^2 = \mathbf{0}$

+ $x^2 = y^2$ which is the required D.E.

12

Class 12 Chapter 9 - Differential Equations

Remark. The above question can also be stated as : Form the D.E. of the family of circles passing through the origin and having centres on x-axis.

7. Find the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis. Sol. We know that equation of parabolas having vertex at origin and axis along positive y-axis is $x^2 = 4ay$...(i) Here a is the only arbitrary constant. So differentiating both sides of

 $2\mathbf{x} = 4\mathbf{a}$ from (i) in (ii), To eliminate a, putting ^Y we have ...(ii) 4a = OX 2x = $\mathbf{2}$ х $\Rightarrow 2xy =$ $\Rightarrow - X$ +2y = 0⇒ X (VERTEX) Dividing both sides by x, required D.E.

2y = x

Y

-2y = 0 which is the

8. Form the differential equation of family of ellipses having foci on y-axis and centre at the origin.

Sol. We know that equation of ellipses having foci on y-axis i.e., vertical ellipses Major Axis (0,) a

+ =
$$1 ... (i)_{b}^{F}$$
 Focus

So we shall differentiate eqn.

(i) twice w.r.t. x.Differentiating both sides of(i) w.r.t. x, we have

X' Here a and b are two arbitrary

OX (-,0)b(,0)b F'

constants.

$$\begin{aligned} & \sum_{(n-)=n}^{2y} & y \\ & (n-)=n & y \\ & +2x=0 \\ & y \\ &$$

Multiplying both

sides by a^2 , y

у

-=1...(i)

Here a and b are two arbitrary constants. So we shall differ entiate eqn. (i) twice w.r.t. $\boldsymbol{x}.$

From (i), . 2x – . 2y

Dividing both sides by 2, x = v

...(ii)

Again differentiating both sides of (ii), w.r.t. x,

. 1 = . D
D
_____+ D
D

or =

Dividing eqn. (iii) by eqn. (ii), we have (To eliminate a and b)

14

Class 12 Chapter 9 - Differential Equations

which is the required differential equation.

- 10. Form the differential equation of the family of circles having centres on y-axis and radius 3 units.
- Sol. We know that on y-axis, x = 0.

 \therefore Centre of the circle on y-axis is $(0, \beta)$.

 \therefore Equation of the circle having centre on y-axis and radius 3 units is $(x-0)^2 + (y-\beta)^2 = 3^2[(x-\alpha)^2 + (y-\beta)^2 = r^2]$ or $x^2 + (y-\beta)^2 = 9 \dots (i)$ Here β is the only arbitrary constant. So we shall differentiate both

sides of eqn. (i) only once w.r.t. x,

From (i), $2x + 2(y - \beta)(y - \beta) = 0$ or $2x + 2(y - \beta)$

$$= 0$$

or 2 (
$$y - \beta$$
)

$$= -2\mathbf{x} \div \mathbf{y} - \mathbf{\beta} =$$

Putting this value of $(y - \beta)$ in (i) (To eliminate β), we have

 $x^2 +$

sides by this L.C.M., \Box

 $\Box \Box^+ \mathbf{x}_2 = 9$

L.C.M. = $\Box \Box \Box$. Multiplying

both

-y = 0

 $\begin{array}{c} \square \square \square \square + x_2 \\ \Rightarrow x^2 \square \square \square \square + x_2 \\ \square \square \square + x_2 \\ \square \square \square + x_2 \\ - 0 \end{array}$

which is the required differential $x + c_2 e^{-x}$ as the equation.

11. Which of the following differential equation has $y = c_1$ e general solution?

(A)

15 Class 12 Chapter 9 - Differential Equations

+ y = 0 (B)

(C)
+ 1 = 0 (D)
$$x + c_2 e^{-x \cdots (i)}$$
.

Sol. Given:
$$y = c_1 e$$

 $x + c_2 e^{-x}(-1) = c_1 e$
 $= c_1 e$
 $x - c_2 e^{-x}$

$$x - c_2 e^{-x}(-1) = c_1 e$$

 $x + c_2 e^{-x} = c_1 e$
∴

or

= y [By (i)]

or

-y = 0 which is differential equation given in option (B)

Option (B) is the correct answer.
12. Which of the following differential equations has y = x as one of its particular solutions?

Sol. Given:

y = x : = 0

= 1 and

clearly satisfy the D.E. of option These values of y, (C). and

. .L.H.S. of D.E. of option (C) = $\frac{2}{-x}$

+ xy

= $0 - x^2(1) + x(x) = -x^2 + x^2 = 0$ = R.H.S. of option (C)] : Option (C) is the correct answer.

Exercise 9.4 (Page No. 395-397)

For each of the differential equations in Exercises 1 to 4, find the general solution:

1.

Sol. The given differential equation is $_$

dx.

Integrating both sides,

f=

∫ dx

$$\begin{aligned}
& \text{ar } y = \int dx = \\
& -x + c
\end{aligned}$$

$$\begin{aligned}
& 16 \\
& \text{Class 12 Chapter 9 - Differential Equations} \\
& \text{Exercise 9.4} \\
& \textbf{a} = & \textbf{b} = & \textbf{c} \\
& \textbf{b} = & \textbf{c} \\
& \textbf{c} &$$

$$\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} dx = \int_{a}^{b} \int_{a}^{b}$$

17 Class 12 Chapter 9 - Differential Equations

or $y = 2 \tan_{-x + c}$ which is the required general solution.

2.

_(-2 < y < 2)

Sol. The given D.E. is

 $= - \Rightarrow dy = - dx$

Separating variables, - = dx

Integrating both sides, $\int dy = \int dx$

⇒ = sin (x + c) ⇒ y = 2 sin (x + c) which is the required general solution. + y = 1 (y ≠ 1) 3.

Sol. The given differential equation is

$$+ y = 1$$

 \Rightarrow

 $=1-y \ \Rightarrow \ dy = (1-y) \ dx \ \Rightarrow \ dy = -(y-1) \ dx$ Separating variables,

$$\int_{a} = -dx$$
dx
$$\int_{a} = -\int_{a}^{b} dx$$
Integrating both sides,
$$\int_{a} \log |y-1| = -x + c$$

$$\int_{a} |y-1| = e^{-x+c} \int_{a}^{b} If \log x = t, \text{ then } x = e$$

$$\int_{a}^{b} y - 1 = \pm e^{-x+c} \rightarrow y = 1$$

$$\pm e^{-x}e$$

$$\int_{a}^{c} e^{-x}$$

$$\Rightarrow y = 1 \pm e$$

$$\Rightarrow$$

For each of the differential equations in Exercises 5 to 7, find

the general solution: ^x + e^{-x}) dy - (e 5. (e ^x - e^{-x}) dx ^x - e^{-x}) dx = 0^x + dx e^{-x}) dy = (e $\Box \Box$ + Sol. The given D.E. is (e -

or dy = Integrating both sides, $\int =$

□ **□ +∫** dx

, o o o o o

 $\begin{aligned} x + e^{-x} | + c \\ \text{or } y = \log | e \\ \vdots \\ \end{bmatrix}$

which is the required general solution.

6.

$$= (1 + x^2)(1 + y^2)$$

Sol. The given differential equation is $= (1 + x^2)(1 + y^2)$

$$\Rightarrow$$
 dy = (1 + x²)(1 + y²) dx

Separating variables,

+ = $(1 + x^2) dx$

Integrating both sides,

$$c + \int dy = + \int dy =$$

which is the required general solution. 7. y log y dx – x dy = 0 Sol. The given differential equation is y log y dx – x dy = 0 \Rightarrow – x dy = – y log y dx

= ...(i)

Separating variables,

 $\int_{-\infty}^{\infty} = \int_{-\infty}^{\infty} \int_{-\infty}^$

Integrating both sides

```
For integral on left hand side, put \log y = t.
```

dt

$$dt$$

$$= \Rightarrow =$$

$$\therefore Eqn. (i) becomes \int = \int$$

$$\Rightarrow \log |t| = \log |x| + \log |c|^* ...(ii) = \log |xc|$$
(19)
Class 12 Chapter 9 - Differential Equations

$$\Rightarrow |t| = |xc|$$

$$\Rightarrow t = \pm xc$$

$$[,] |x| = |y| \Rightarrow x = \pm y]$$

$$\Rightarrow \log y = \pm xc = ax \text{ where } a = \pm c$$

$$a^x \text{ which is the required general solution.}$$

$$\therefore y = e$$
For each of the differential equations in Exercises 8 to 10, find the general solution:

$$5$$
8. x

$$= -y_5$$
Sol. The given differential equation is x

$$\Rightarrow x^6 dy = -y^5 dx$$

$$= -$$
Integrating both sides,

$$\int dy = - \int dx$$

$$= -$$
Integrating both sides,

$$\int dy = - \int dy = - -f$$

$$\int dx$$

$$= -$$
Integrating both sides,

$$= -$$
Integrat

Multiplying by -4, $y^{-4} = -x^{-4}C$ $\Rightarrow x^{-4} + y^{-4} = -4C \Rightarrow x^{-4} + y^{-4} = C$ where C = -4c which is the required general solution.

9. $= \sin^{-1} x$ Sol. The given differential equation is or $dy = \sin^{-1} x dx$ $= \sin_{-1} x$ $dy = _{-}$ Integrating both sides, ſ dx or y = $\int dx$ ΙIΙ Applying product rule, $\int = x \sin^{-1} x$ (sin_1 x) dx – dx dx $y = (\sin^{-1}x)$ dx = x dx ...(i) To evaluate dx _ [Put $1 - x^2 = t$. Differentiate -2x dx = dt

*Remark. To explain _____*in eqn. (ii)

If all the terms in the solution of a D.E. involve logs, it is better to use log c or log $\mid c \mid$ instead of c in the solution.

```
\int dx = -\int = -^{-}
      ÷
      ſ
                                                                   required general
                                    \int dx in (i), the
      dt
      = -
           _ _ _
      Putting this value of
      solution is
                           y = x \sin^{-1} x + - + c.
*) sec<sup>2</sup> y dy = 0
     <sup>x</sup>tan y dx + (1 - e
                                        Sol. The given equation is e
10. e
<sup>x</sup>) \sec^2 y \, dy = 0
                                        <sup>x</sup>) tan y, we have
x \tan y \, dx + (1 - e)
             Dividing every term by (1 - e
                                                   separated)
      - dx +
      dy = 0
     - [ dx +
     Integrating both sides, \int dy = c
      -\int dx + \log |\tan y| = c
      or -
                                                   |x| + \log |\tan y| = c
          ' <sup>0</sup> 0 0
      (Variables
                                                      or – log | 1 – e
...
```

or log

$$\sum_{x \to 1} |t| = c' \Rightarrow t = \pm c' = C \text{ (say)} \text{ For each of the}$$

or tan y = C (1 - e
differential equations in Exercises 11 to 12, find a particular solution
satisfying the given condition: 11. $(x^3 + x^2 + x + 1)$
 $= 2x^2 + x, y = 1$, when x = 0
Sol. The given differential equation is $(x^3 + x^2 + x + 1)$
 $\therefore (x^3 + x^2 + x + 1) \text{ dy } = (2x^2 + x)$
 dx
variables dy =
+
dx
+ + +
Separating
+
or dy =
$$\sum_{x \to 1}^{x} dx$$

 $[\vdots \\ x^3 + x^2 + x + 1 = x^2(x+1) + (x+1) = (x+1)(x^2+1)]$ Integrating both sides, we have

> 21 Class 12 Chapter 9 - Differential Equations

$$\begin{array}{c} + + \int dx \text{ or } y = \\ + + \\ dy = \end{array}$$

ļ

or

- = c'

ſ

$+ + \int dx ...(i)$

= fractions) ++ + (Partial ...(ii) Multiplying both sides by L.C.M. = $(x + 1)(x^2 + 1)$, we have $2x^2 + x = A(x^2 + 1) + (Bx + C)(x + 1)$ or $2x^2 + x = Ax^2 + A + Bx^2 + Bx + Cx + C$ Comparing coeff. of x^2 on both sides, we have A + B = 2 ...(ii) Comparing coeff. of x on both sides, we have B + C = 1 ...(iv) Comparing constants A + C = 0 ...(v) Let us solve eqns. (iii), (iv) and (v) for A, B, C eqn. (iii) – eqn. (iv) gives to eliminate B, A - C = 1 ...(vi)

Adding (v) and (vi), 2A = 1 or A =

From (v), C = -A = -

Putting C = -in (iv), B = 1 or B = 1 + = Putting these values of A, B, C in (ii), we have

Putting this value in (i)

$$f \int dx$$

y =
y = log (x + 1) + log (x² + 1) -tan⁻¹x + c ...(vii) [] [] '[] [] []

. [....

To find c When x = 0, y = 1 (given) Putting x = 0 and y = 1 in (vii),

 $1 = \log 1 + \log 1 - \tan^{-1} 0 + c$

22 Class 12 Chapter 9 - Differential Equations

or 1 = c [\therefore log 1 = 0 and tan⁻¹0 = 0] Putting c = 1 in eqn. (vii), the required solution is

$$y = \log (x + 1) + \log (x^{2} + 1) - \tan^{-1} x + 1.$$
$$y = [2 \log (x + 1) + 3 \log (x^{2} + 1)] - \tan^{-1} x + 1 = [\log (x + 1)^{2} + \log (x^{2} + 1)^{3}] - \tan^{-1} x + 1$$

 $= \left[\log (x+1)^2 (x^2+1)^3 \right] \tan^{-1} x + 1$ which is the required particular solution.

12. x $(x^2 - 1)$

= 1; y = 0 when x = 2.

Sol. The given differential equation is $x(x_{-1}^2) = 1$

+ - [

$$\Rightarrow x(x^2 - 1) dy = dx \Rightarrow \int \Rightarrow y = dy = dy = dy = dy$$

dy =

Integrating both sides,

$$dx + c \dots (i)_{Let}$$

the integrand =

+ -

(By Partial Fractions) Multiplying by L.C.M. = x(x + 1)(x - 1),

+

...

⇒

 $-1 + B + B = 0 \text{ or } 2B = 1 \Rightarrow B =$

 \therefore From (iv), C = B = Putting these values of A, B, C in (ii),

23

Class 12 Chapter 9 - Differential Equations

$$-\int dx = -\int dx +$$

+ $\int dx + - \int dx$

$$= -\log |x| + \log |x+1| + \log |x-1|$$
$$= [-2 \log |x| + \log |x+1| + \log |x-1|]$$
$$= [-\log |x|^{2} + \log |(x+1)(x-1)|]$$
$$+ - \int dx =$$

Putting this value in (i), $\begin{bmatrix} 0 & 0 & - & - & - & 0 \\ & 0 & 0 & 0 \end{bmatrix}$

 $y = \log^{-1}$

+ c ...(v)

To find c for the particular solution Putting y = 0, when x = 2 (given) in (v),

 $0 = \log + c \Rightarrow c = \log$

Putting this value of c in (v), the required particular solution is y = y

OR

log

```
– log
```

dx =

To evaluate

dx =

_∫

Put $\mathbf{x}^2 = \mathbf{t}$.

For each of the differential equations in Exercises 13 to 14, find a particular solution satisfying the given condition:

13. cos

 $a (a \in R)$; y = 1 when x = 0Sol. The given differential equation is

 \cos

$$= a (a \in \mathbb{R}); y = 1 \text{ when } x = 0$$

dx

:..

 $= \cos^{-1} a \Rightarrow dy = (\cos^{-1} a) dx$ Integrating both sides $\int_{dy = -}^{} (\cos^{-1} a) \int_{dx} dx$ $\Rightarrow y = (\cos^{-1} a) x + c \dots (i) \text{ To find c for particular solution } y = 1$ $\text{when } x = 0 \text{ (given)} \therefore \text{ From } (i), 1 = c.$ Putting c = 1 in (i), $y = x \cos^{-1} a + 1$ $\Rightarrow y - 1 = x \cos^{-1}$ 24 $a \Rightarrow$ $= \cos^{-1} a$ Class 12 Chapter 9 - Differential Equations $\Box = \Box \Box = a$ which is the

required particular solution.

 \Rightarrow COS

14.

= y tan x; y = 1 when x = 0

Sol. The given differential equation is → dy = y tan x dx = y tan x

> Separating variables,= $\tan x \, dx$ $\log |y| = \log |\sec x$ Integrating both $|+\log |c|$ dxsides $\int dy = \int \Rightarrow$

 $\Rightarrow \log |y| = \log |c \sec x| \Rightarrow |y| = |c \sec x| \therefore y = \pm c \sec x$ x or y = C sec x ...(i) where C = ± c To find C for particular solution Putting y = 1 and x = 0 in (i), 1 = C sec 0 = C

Putting C = 1 in (i), the required particular solution is $y = \sec x$. 15. Find the equation of a curve passing through the point (0, 0) and whose ^xsin x.
^xsin x

Sol. The given differential equation is y' = e

 $x \sin x \Rightarrow dy = e$ ^xsin x dx = e $dy = \int$ dx Integrating both sides. or $y = I + C \dots (i)$ where $I = \int$ dx ...(ii)_{1 II} dx "" # \$ % & && & && ΙIΙ $\& \& \& (-\cos x) -$ Again applying product rule, $x_{\sin x}$ = e $x \cos x + e$ dx I = -e $x_{\cos x + \int$ dx $\Rightarrow I = -e$ $x(-\cos x + \sin x) - I$ [By (ii)] Transposing 2I = e $\Rightarrow I = e^{::I = I}$ $x(\sin x - \cos x)$ $(\sin x - \cos x)$

Putting this value of I in (i), the required solution is 25 Class 12

Chapter 9 - Differential Equations

 $x(\sin x - \cos x) + c$...(iii) To find c. Given that required

y = ecurve (i) passes through the point (0, 0). Putting x = 0 and y = 0 in (iii),

 $0 = (-1) + c \text{ or } 0 = - c \therefore c = x$ in (iii), the required equation of the curve is Putting c = y = e (sin x - cos x) +

$$x^{x} = \cos x + 1$$

 $x^{x} (\sin x - \cos x) + 1 \text{ or } 2y - 1 = e$

 $\text{L.C.M.} = 2 \div 2y = e$

which is the required equation of the

curve.

16. For the differential equation xy = (x + 2)(y + 2), find ^x(sin x - cos x)

the solution curve passing through the point (1, -1). Sol.

⁺∫ dx

The given differential equation is xy = (x + 2)(y + 2)

 $\Rightarrow xy \, dy = (x+2)(y+2) \, dx$

Separating variables

+ dx

⇒

 $+\int dy =$

+ dy =

Integrating both sides,

 $+ \int dy = \Box \int dx$

- ₀ ₀ -

 $\begin{array}{c} \square + \square \square \\ \square \square \end{array} \int dx$

 $\Box \Box + + \int dy =$

 $\overset{\Rightarrow}{=} \begin{array}{c} \overset{\Rightarrow}{=} \\ & & & \\ & & \\ & & \\ & & \\ \Rightarrow y - 2 \log |y + 2| = x + 2 \log |x| + c \\ & \\ \Rightarrow y - x = \log (y + 2)^{2} + \log x^{2}_{+ c} | \therefore |x|^{2} = x^{2} \Rightarrow y - x = \log ((y + 2)^{2} x^{2}) \end{array}$

+ c ...(i) To find c. Curve (i) passes through the point (1, - 1).

Putting x = 1 and y = -1 in (i), $-1 - 1 = \log (1) + c$ or -2 = c ($\log 1 = 0$)

Putting c = -2 in (i), the particular solution curve is y - x = log ((y + 2)² x²) - 2

or $y - x + 2 = \log ((y + 2)^2 x^2)$.

17. Find the equation of the curve passing through the point (0, -2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the

point.

Class 12 Chapter 9 - Differential Equations

Sol. Let P(x, y) be any point on the required curve.

According to the question,

(Slope of the tangent to the curve at P(x, y)) × y = x

 \Rightarrow

 $y = x \Rightarrow y dy = x dx$ Now variables are separated.

Integrating both sides $\int_{dy=f}^{f} = 2, y^2 = x^2 + 2c$

 $dx \therefore$ = + c Multiplying by L.C.M.

26

or $y^2 = x^2 + A$...(i) where A = 2c. Given: Curve (i) passes through the point (0, -2). Putting x = 0 and y = -2 in (i), 4 = A. Putting A = 4 in (i), equation of required curve is $y^2 = x^2 + 4$ or $y^2 - x^2 = 4$.

18. At any point (x, y) of a curve the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4, -3). Find the equation of the curve given that it passes through (-2, 1).

Sol. According to question, slope of the tangent at any point P(x, y) of the required curve.

= 2 _>

Cross-multiplying, (x + 4) dy = 2(y + 3) dx

Separating variables,

Integrating both

sides,

$$+ \int dy = 2$$

+
$$\int dx$$

+ dx

 $\Rightarrow \log |y + 3| = 2 \log |x + 4| + \log |c|$ $(For \log |c|, see Foot Note page 612)$ $\Rightarrow \log |y + 3| = \log |x + 4|^{2} + \log |c| = \log |c| (x + 4)^{2} \Rightarrow |y + 3| = |c| (x + 4)^{2}$ $\Rightarrow y + 3 = \pm |c| (x + 4)^{2}$ $\Rightarrow y + 3 = \pm |c| (x + 4)^{2}$ $\Rightarrow y + 3 = C(x + 4)^{2}...(i) where C = \pm |c| 27$

Class 12 Chapter 9 - Differential Equations

To find C. Given that curve (i) passes through the point (-2, 1). Putting x = -2 and y = 1 in (i),

 $1 + 3 = C(-2 + 4)^2 \text{ or } 4 = 4C \implies C = 1.$ Putting C = 1 in (i), equation of required curve is $y + 3 = (x + 4)^2 \text{ or } (x + 4)^2 = y + 3.$

19. The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Sol. Let x be the radius of the spherical balloon at time t. Given: Rate of change of volume of spherical balloon is constant = k (say) $\pi^{\Box} = \pi^{\Box} = \pi^{\Box} = \pi^{\Box}$

$$\lim_{k \to \pi_{3x^2}} = k \to 4\pi x_2 = k$$

 $\stackrel{\rightarrow}{\text{Separating variables, } 4\pi x^2 \, dx = k \, dt } \\ \text{Integrating} \int = kt + c \dots(i) \\ \text{both sides, } 4\pi \Rightarrow 4\pi \quad dx = k \int$

To find c: Given: Initially radius is 3 units. \Rightarrow When t = 0, x = 3 Putting t = 0 and x = 3 in (i), we have

$$\pi(27) = c \text{ or } c = 36\pi \dots(ii)$$

To find k: Given: When t = 3 sec, x = 6 units Putting t = 3 and x = 6 in (i), $^{\Pi}(6)^3 = 3k + c$. Putting c = 36π from (ii), $^{\Pi}(216) = 3k + 36\pi$ or 4π (72) $- 36\pi = 3k \Rightarrow 288\pi - 36\pi = 3k$ or $3k = 252\pi \Rightarrow k = 84\pi$...(iii) Putting values of c and k from (ii) Putting values of c and k from (ii) and (iii) in (i), we have $^{\Pi} + 36\pi$ Dividing both sides by $x^3 = 84\pi t$

20. In a bank principal increases at the rate of r % per year. Find the value of r if ` 100 double itself in 10 years. (log_e 2 = 0.6931)

28

Class 12 Chapter 9 - Differential Equations

Sol. Let P be the principal (amount) at the end of t years. According to given, rate of increase of principal per year = r% (of the principal)

⇒ \$ =_{"×P}

Separating variables, \$

="" dt

Integrating both sides, $\log P =_{\parallel}$ is

t + c ...(i) (Clearly P being principal > 0, and hence log | P | = log P) To find c. Initial principal = `100 (given) i.e., When t = 0, P = 100 Putting t = 0 and P = 100 in (i), log 100 = c.

dt

''' ='

- 22. In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present.
- Sol. Let x be the bacteria present in the culture at time t hours. According to given,

Rate of growth of bacteria is

present. is proportional to x.

proportional to the number

∴ i.e.,

= kx where k is the constant of proportionality (k > 0 because rate of growth (i.e., increase) of bacteria is given.)

$$\Rightarrow$$
 dx = kx dt \Rightarrow = k dt

dx = k dt

Integrating

both sides, J

 \Rightarrow log x = kt + c ...(i) To find c. Given: Initially the bacteria count is x_0 (say) = 1,00,000.

 \Rightarrow When t = 0, x = x₀.

Putting these value in (i), $\log x_0 = c$. Putting $c = \log x_0$ in (i), $\log x = kt + \log x_0$

 $\Rightarrow \log x - \log x_0 = kt \Rightarrow \log x = kt ...(ii)$ To find k: According to given, the number of bacteria is increased by 10% in 2 hours.

 \therefore Increase in bacteria in 2 hours =

$$" \times 1,00,000 = 10,000$$

 \therefore x, the amount of bacteria at t = 2 = 1,00,000 + 10,000 = 1,10,000 = x₁ (say) Putting x = x₁ and t = 2 in (ii),

= e

Separating variables,

Integrating both sides

 $dx \qquad \int \qquad dy = \int$ $- \qquad x + c \Rightarrow -e^{-y} - e$ $x = c \qquad x = -c$ $\Rightarrow \qquad - = e$ Dividing by - 1, $e^{-y} + e$

 $x + e^{-y} = C$ where C = -c which is the required solution. \therefore or e Option (A) is the correct answer.

Class 12 Chapter 9 - Differential Equations

Exercise 9.5

In each of the Exercises 1 to 5, show that the given differential equation is homogeneous and solve each of them:

1. $(x^2 + xy) dy = (x^2 + y^2) dx$ Sol. The given D.E. is

 $(x^2 + xy) dy = (x^2 + y^2) dx ...(i)$ This D.E. looks to be homogeneous as degree of each coefficient of dx and dy is same throughout (here 2).

 \therefore The given D.E. is homogeneous.

Put = v. Therefore y = vx.

:..

= v . 1 + x

= v + x

+

Putting these values of and

in (ii), we have

v + x =

+ =

х

Transposing v to R.H.S., x

=

+-v

Cross-multiplying x(1 + v) dv = (1 - v) dx

+

Separating variables

dv =

Integrating both sides

$$-\int dv = \int$$

$$-\int dv = \log x + c \Rightarrow$$

$$-\int dv = \log x + c \qquad \Box \Box -$$

$$-$$

$$+ + + - - \qquad -^{-v} = \log x + c , -2$$

$$\Box \Box - \int dv = \log x + c \Rightarrow$$

$$\Rightarrow -2 \log (1 - v) - v = \log x + c Put v =$$

$$\log$$

Dividing by $-1, 2 \log$

$$\log_{\mathbf{D}} + \log_{\mathbf{D}} x = --c \Rightarrow \log_{\mathbf{D}} + \log_{\mathbf{D}} x = -c$$

$$\Rightarrow \log \Box \Box = -c$$

$$= -e$$

$$= -c$$

$$= -c$$

$$= -c$$

$$= -c$$

$$= -c$$

 \rightarrow

which is the required solution.

2. y′ =

Sol. The given differential equation is y^\prime =

$$= 1 + = f$$

$$= + = i$$

$$\therefore \text{ Differential equation (i) is } 33$$

$$homogeneous.$$

$$\square \square \square \dots (i)$$

Class 12 Chapter 9 - Differential Equations

$$Put = v \therefore y = vx$$

÷

= v . 1 + x

= v + x

Putting these values of

and y in (i),

v + x

 $= 1 + v \Rightarrow x$

 $= 1 \Rightarrow x dv = dx$

Separating variables, dv =

v = ,

Integrating both sides, $\int dv = \int v = \log |x| + c$ Putting

= $\log |x| + c \therefore y = x \log |x| + cx$ which is the required solution. 3. (x - y) dy - (x + y) dx = 0Sol. The given differential equation is

(x - y) dy - (x + y) dx = 0 ...(i) Differential equation (i) looks to be homogeneous because each coefficient of dx and dy is of degree 1.

From (i), (x - y) dy = (x + y) dx $\begin{bmatrix} - & + \\ 0 & - \end{bmatrix} + \begin{bmatrix} - & -$

=

.. +

$$\Box - Or_{f} =$$

 \therefore Differential equation (i) is

homogeneous. Put = $v \div y =$

vx :

= v . 1 + x

= v + x

+ X

 \geq

Shifting v to R.H.S., x

+

+

Putting these values in (ii), v –

🗆 ...(ii)

=

_^{- v =} +-+ ⇒ X ⁼

Cross-multiplying, x $(1 - v) dv = (1 + v^2) dx -$

Separating variables,

$$-$$
+ $\int dv = \int dx + c$

, o o o o o o

+ dv =

Integrating both sides,

Class 12 Chapter 9 - Differential Equations +

34

$$-1 \log_{v = 1} \log x + c$$

$$-1 \log_{v = 1} \log x + c$$

$$\Rightarrow \tan^{-1}$$

00+

$$\square \square = \log x + c$$

-1 $\rightarrow \tan \log$

0 +_{0 0}

 $\Box \Box = \log x + c$

 $\begin{array}{c} -1 \\ \Rightarrow \tan & -\left[\log \left(x^{2} + y^{2}\right) - \log x^{2}\right] = \log x + c \Rightarrow \tan & -\log \left(x^{2} + y^{2}\right) \\ +2 \\ \log x = \log x + c \Rightarrow \tan & -\log \left(x^{2} + y^{2}\right) = c \Rightarrow \tan & -1 \\ = \log \left(x^{2} + y^{2}\right) = c \Rightarrow \operatorname{C} \left(x^{2} + y^{2}\right) = c \Rightarrow \operatorname{C} \left(x^{2} + y^{2}\right) = c \Rightarrow \operatorname{C} \left(x^{2} + y^{2}\right) = c \Rightarrow \operatorname$ y^2) + c which is the required solution.

4. $(x^2 - y^2) dx + 2 xy dy = 0$

Sol. The given differential equation is

 $(x^2 - y^2) dx + 2xy dy = 0 ...(i)$ This differential equation looks to be homogeneous because degree of each coefficient of dx and dy is same (here 2).

From (i), $2xy dy = -(x^2 - y^2) dx$

Dividing every term in the numerator and denominator of R.H.S. by x^2 ,

 \therefore The given differential equation is homogeneous. Put

= v. Therefore $y = vx \therefore$

$$= v \cdot 1 + x$$

= v + x

Putting these values of and
in differential equation (ii),
$$v + x^{=}$$

 $\rightarrow x^{-v=}$
 $-^{-v=}$
 $-^{-s}$
 $-^{-s}$
 35
Class 12 Chapter 9 - Differential
Equations
 $+^{*} x 2v dv = -(v^{2} + 1) dx$

⇒

Integrating both sides,

 $+\int_{a} dv = -\int dx$ $\Rightarrow \log (v^{2} + 1) = -\log x + \log c \Rightarrow \log (v^{2} + 1) + \log x = \log c$ 1) + $\log x = \log c$ $\Rightarrow \log (v^2 + 1) x = \log c$ $\Rightarrow (v^2 + 1) x = c$ Put v = ' $\Box \Box +$ $\Box \Box x = c \text{ or}$ or $= c \text{ or } x^2 + y^2$ ° +_{0 0} ппх=с which is the required solution. 5. x² $= x^2 - 2y^2 + xy$ $\mathbf{2}$ Sol. The given differential equation is x

$$= x_2 - 2y^2 + xy$$

The given differential equation looks to be Homogeneous as all terms in x and y are of same degree (here 2).

by x^2 .

= - +

or

= 1 - 2Dividing

= F

 \therefore Differential equation (i) is homogeneous.

So put = $v \therefore y = vx$

:..

= v . 1 + x

= v + x

=

Putting these values of and

in (i),

v + x

$$= 1 - 2v_2 + v \text{ or } x$$

$$= 1 - 2v_2$$

 $\Rightarrow x dv = (1 - 2v^2) dx$

Separating variables,

36 Class 12 Chapter 9 - Differential Equations

 $\int \mathrm{d} v = \int \mathrm{d} x$

Integrating both sides,

$$= \log |\mathbf{x}| + c$$

$$| \Box \Box$$

$$U = 0$$

Multiplying within logs by x in L.H.S.,

log

⇒

log

+

$$- = \log |\mathbf{x}| + c.$$

In each of the Exercises 6 to 10, show that the given D.E. is homogeneous and solve each of them:

+

6. x dy - y dx = dxSol. The given differential equation is x dy - y dx = + dx or x dy = y dx + + . dx Dividing by dxх $\Box + \Box \Box$ $\Box = F$ Dividing by x, = V or x 0 + 0 0_{0 0} □ □ □ ...(i) + X \therefore Given differential equation is homogeneous. Put

= v i.e., y = vx.

Differentiating w.r.t. x,

= v + x

Putting these values of and

in (i), it becomes

v + x= V + + or x = + $\therefore x dv = +$ dx or + = Integrating both sides, += ∫ 37 Class 12 Chapter 9 - Differential Equations $\therefore \log (v + +)$ $) = \log x + \log c$ Replacing v by , we have $\begin{array}{c} \Box \\ \Box \\ \Box \end{array} + + \begin{array}{c} \Box \\ \Box \\ \Box \end{array} \begin{array}{c} \Box \\ \Box \end{array} = \log \operatorname{cx} \operatorname{or}$ $\log + + = cx$ or $y + = cx^2$ which is the required solution. y dx = y dx =The given D.E. is

 $\begin{array}{c} & & \\ & &$

=

Cross-multiplying, $x(v \sin v - \cos v) dv = 2v \cos v dx$

Separating variables,

dv = 2

Integrating both sides,

 $\int dv = 2 \int dx$

Using $\Box \Box = \Box \Box \int dv = 2 \int dx$

38 Class 12 Chapter 9 - Differential Equations

 $\rightarrow \log$

$$= \log |x|^{2} + \log |c| = \log (|c|x^{2})$$

$$\Rightarrow$$
 sec v = ± | c | x^2 v

 $= |c| x^{2} \Rightarrow$

where
$$C = \pm |c|_{or}$$

 $= \pm |c| x^2$

Putting $v = , sec = Cx^2$

 $\mathrm{sec}\ =\mathrm{Cxy}\ \Rightarrow$

= Cxy

 \Rightarrow C xy cos = 1 \Rightarrow xy cos = ! = C₁ (say) which is the required solution.

8. x

```
= 0
Sol. The given D.E. is x
```

 $-y + x \sin y$

$$= y - x \sin x$$

 $\Box \Box \Box$ $\Box \Box = -\sin \operatorname{or} x$

Dividing every term by $x_{,} =$

Putting =
$$v$$
 i.e., $y = vx$ so that

F 000 00=F

Since homogeneous.

Putting these values of and

V + X

 $= v - \sin v$

or x

in (i), we have

 $= -\sin v \cdot x \, dv = -\sin v \, dx$

or cosec v dv = - or

= v + x

Integrating, $\log | \operatorname{cosec} v - \operatorname{cot} v | = -\log |x| + \log |c|$ or \log

 $|\operatorname{cosec} v - \operatorname{cot} v| = \log$

=

39 Class 12 Chapter 9 - Differential Equations

or cosec v - cot v = \pm Replacing v by , cosec - cot = [!] where C = \pm c

> ⇒ - ! ! = ⇒ =

Cross-multiplying, x solution. required

 $\begin{tabular}{cccc} \Box & \Box & \Box \\ \Box & \Box & \Box & dy \mbox{ or } y \mbox{ } dx = x \end{tabular}$ $\Box = C \sin^{\text{which}} dy_{-} 2x dy = 0$ is the \therefore y dx = 2x dy - x 9. y dx + x log ____(i) dy - 2x dy = 0Sol. The given differential equation is $y \therefore$ = dx + x= F dy = F differential Putting = v i.e., y = vx so that equation is Since homogeneous. = v + x🛛 🗋, the given Putting these values of and in (i), we have v + x=_

- V =

=

 $\therefore x(2 - \log v) dv = v$ $(\log v - 1) dx$

or

or

or x

- + = or x

=

dv =

n

40 Class 12 Chapter 9 - Differential Equations

- +

$$\begin{array}{c|c} \Box & - & \Box \\ & \Box & - \end{array} \int dv = \log \mid x \mid + \log \mid c \mid \end{array}$$

$$or \log |\log v - 1| - \log |v| = \log |x| + \log |c| \square$$

or log

 $= \log | cx | or$

-= | cx | or

 $= \pm cx = Cx$ where $C = \pm c$ or $\log v - 1 = Cx v$

Replacing v by , we have

 $\log - 1 = Cx$

 $\label{eq:constraint} \begin{array}{c} \square \ \square \ \square \\ \square \ \square \ \log -1 = Cy \end{array}$ which is a primitive (solution) of the given differential equation. Second solution

The given D.E. is y dx + x log $\begin{bmatrix} y \\ 0 \\ 0 \end{bmatrix}$

 $x \, \mathrm{dy} - 2x \, \mathrm{dy} = 0$

∵∫

Dividing every term by dy,

$$\int_{y}^{dx} dy - x \log \int_{y}^{x} - 2x = 0_{\log \log - \log - \log - \log - \log - \log (y)} = = = 0$$

Dividing every term by y,

$$\begin{array}{c} x \\ 2 y \\ dy dx \\ = 0 \\ - \begin{array}{c} x \\ y \log y \\ y - \end{array} \end{array} \qquad \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} = \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}$$

 $dx = \frac{x}{y} \log \frac{x}{y} + 2 \sum_{y=1}^{x} (i)_{Fy}$ ∴ The given differential is homogeneous. x = v i.e. x = vyPut yso that $dx dy = v + y^d dy^v$ Putting these values in D. E. (i), we have $v + y^{d} dv^{U} = v \log v + 2 v$ $\stackrel{d}{\Rightarrow} \stackrel{d}{y} \stackrel{d}{dy} \stackrel{v}{=} v \log v + v = v (\log v + 1)$ Cross-multiplying y dv = v (log v + 1) dy 41 Class 12 Chapter 9 - Differential Equations d dyv Separating variables $(\log 1)$ vv1v vv 1 Integrating both sides log $f = \Box \Box \Box \Box \Box f f v v$ пп $\int_{1}^{a} dy$ v y $\therefore \log \log 1 \log \log \log v += + = () \log |()| () \therefore \log v + 1 = \pm cy =$ Cy where $C = \pm c$ x, we have Replacing v by y $x_{y} + 1 = Cy$ or $-\log^{y} x + 1 = Cy \log - \log \text{ see page } 632 \square$ $\cdot \cdot x y$ y x

y - 1 = -Cy or $= C_1$ which is a primitive (solution) of the given D.E.

$$dy = 0$$

$$x/y = 0$$

$$x'y = 0$$

$$y = 0$$

= v + y

in (i), we have

and

v + y

=

Now transposing v to R.H.S.

y = $(e - e) + e^{-v} = e^{-v} + e^{-v} + e^{-v} = e^{-v} + e^{-v} + e^{-v} = e^{-v} + e^{-v} + e^{-v} + e^{-v} = e^{-v} + e^{-v$

^v+ v) dy or

x/y = C where $C = \pm c$ x + y ewhich is the required general solution.

 v) | = - log | y | + log | c | Integrating, log | (v + e

Replacing v by, we have

log

+

 $Or = \log r$

+_

 $\begin{array}{c} x/y & !\\ \therefore^{+} e^{} & = \pm \end{array}$ Multiplying every term by y,

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition: 11. (x + y) dy + (x - y) dx = 0; y = 1 when x = 1

0+0

Sol. The given differential equation is

=

or

...

(x + y) dy + (x - y) dx = 0, y = 1 when x = 1...(i) It looks to be a homogeneous differential equation because each coefficient of dx and dy is of same degree (here 1).

From (i), (x + y) dy = -(x - y) dx

+ =

0 0 0 ____(ii)

 \therefore Given differential equation is homogeneous. Put

= v. Therefore y = vx.

= f

:.

- +

=

= v . 1 + x

⇒ x +⁼⁻⁻⁻⁻

= v + x

Putting these values in eqn. (ii), v + x

43 Class 12 Chapter 9 - Differential Equations

+ = +

-- +

=

 $_{\textbf{+}} \therefore \mathbf{x}(\mathbf{v}+1) \ \mathbf{dv} = -$

 $(v^2 + 1) dx$

+ dv = -

:.

Separating

variables,

 $+\int dv +$

 $\stackrel{\Rightarrow}{+} \int dv = - \int dx$

 $\stackrel{\Rightarrow}{\rightarrow} \log (v^2 + 1) + \tan^{-1}$

 $\int dv + \tan^{-1} v = -\log x + c$

 $\begin{array}{c} \log \\ \operatorname{Putting} v = , \\ \Box \\ \Box \\ + \end{array}$

 $v = -\log x + c$

___^{′ _ _}__

 $\begin{array}{l} \label{eq:2.1} \underset{\to}{\Rightarrow} \ [\log \ (x^2 + y^2) - \log x^2] + \tan^{-1} = -\log x + c \ \Rightarrow \ \log \ (x^2 + y^2) - 2 \log x \\ + \tan^{-1} = -\log x + c \ \Rightarrow \ \log \ (x^2 + y^2) + \tan^{-1} = c \ ... (iii) \ \mbox{To find c:} \\ \mbox{Given: } y = 1 \ when \ x = 1. \end{array}$

Putting x = 1 and y = 1 in (iii), $\log 2 + \tan^{-1} 1 = c \square \pi \pi^{--} \Rightarrow = \square \square$

$$\frac{1}{\operatorname{or} c = \log 2 + \pi}$$

Putting this value of c in (iii),

$$\log{(x^2 + y^2)}_{+ \tan} = \log{2} + \pi$$

Multiplying by 2,

 $log (x^{2} + y^{2}) + 2 \tan^{-} 1 = log 2 + \pi$ which is the required particular solution. 12. x² dy + (xy + y²) dx = 0; y = 1 when x = 1 Sol. The given differential equation is x² dy + (xy + y²) dx = 0 or x² dy = - y (x + y) dx

0 + 0 0_n

Π

44

Class 12 Chapter 9 - Differential Equations

□ + □ □ □ □ = F □ □ □ □ □...(i)

or

:..

 \therefore The given differential equation is homogeneous. Put

= v, i.e., y = vx

Differentiating w.r.t. x,

= v + x

Putting these values of and

we have v + x

in differential equation (i), R.H.S., x

 $= -v(1 + v) = -v - v_2$

Transposing v to

or x or

= -v(v+2) x dv = -v(v+2)

 $=-v_{2}-2v$

dx

Integrating both sides,

$$\int dv = -\int dx$$

or

+ $dv = -\log |x|$ or

 $\int dv = -\log |x|$

Separating terms

or

 $\Box \Box^{-}$ $\Box \Box + \int dv = -2 \log |x|$ or log | v | - log | v + 2 | = log x⁻² + log | c |

 $+ = \log | cx_{-2}|$

or log
+ ∴ ∴

Replacing v to , we have

$$+ = \pm$$

$$= \pm$$
or
$$+$$

$$+$$

$$+ = \pm$$
or $x^2y = C(y + 2x)$
where $C = \pm c \dots$ (ii) To find C
Put $x = 1$ and $y = 1$ (given) in eqn. (ii), $1 = 3 C \therefore C =$ Putting
in eqn. (ii), required particular solution is 45 Class 12 Chapter

particular solution is 45 Class 12 Chapter 9 -Differential Equations

C =

$$x^{2}$$

y = (y + 2x) or $3x^{2}y = y + 2x$.

$$dx + x dy = 0; y = "when x = 1$$

Sol. The given differential equation is

dx

$$= -x \sin_{2+y}$$

Dividing by x,

$$=-\sin^{2}+...(i)$$

= v + x

= F

 \square \square \square \square \square \square \vdots . The given differential equation is homogeneous.

Put = $v \therefore y = vx \therefore$

$$= v \cdot 1 + x$$

Putting these values in differential equation (i), we have v + x

$$v + v \Rightarrow x$$

= $-\sin_2$

 \Rightarrow x dv = $-\sin^2 v$ dx

Separating variables,

$$\int_{a=-}^{b=-} \int_{v}^{dx} dx$$

= - Integrating,

Sol. The given differential equation is

14.

 $-+\cos e^{2} = 0$; y = 0 when x = 1

 $\begin{tabular}{cccc} \Box & \Box & \Box \\ or & \Box & \Box & \cdots & (i) \\ \end{tabular} \dot{\end{tabular}} & \dot{\end{tabular}}$

homogeneous. Put $= v \therefore y = vx \therefore$

 $= v \cdot 1 + x$

Putting these values in differential equation (i), _

v + x

 $= v - cosec v \Rightarrow x$

 $\therefore x \sin v dv = -dx$

Separating variables, $\sin v$

Integrating both sides,

$$\int_{-}^{-}\int_{-}^{-}dx$$

 $-\cos v = -\log |x| + c$

dv = -Dividing by - 1, cos v = log | x | - c

Putting v = , cos = log | x | - c ...(ii) To find c: Given: y = 0 when x = 1 \therefore From (ii), cos 0 = log 1 - c or 1 = 0 - c = - c \therefore c = -1

Putting c = -1 in (ii), cos = log | x | + 1 = log | x | + log e \Rightarrow cos = log | ex | which is the required particular solution. 15. 2xy + y² - 2x

Sol. The given differential equation is

$$2xy + y^2 - 2x$$

= 0; y = 2 when x = 1...(i)

The given differential equation looks to be homogeneous because each coefficient of dx and dy is of same degree (2 here).

2 From (i), – 2x □ □ □ _□ ...(ii)

 $\overset{\text{or}}{\square \square \square} = F^{-}$

 \therefore The given differential equation is homogeneous. Put

 $= v \therefore y = vx \therefore$

= v . 1 + x

=

= +

= V + X

Putting these values in differential equation (ii), we have v + x

 $= \mathbf{v} + \mathbf{v}^2 \Rightarrow \mathbf{x}$

 $= v^2 \Rightarrow 2x \, dv = v^2 \, dx$

Separating variables, 2

47 Class 12 Chapter 9 - Differential Equations

=

 $\int_{dx} dx$

dv =Putting v =, ⇒ 2 $= \log |\mathbf{x}| + c$ $- = \log |x| + c \Rightarrow$ $\Box \Box \Box_{\Box \Box} = \log |\mathbf{x}| + c$ $r_{=} \log |x| + c \dots (iii)$ To find c: Given: y = 2, when x = 1. \therefore From (iii), $= \log 1 + c \text{ or } - 1 = c$ Putting c = -1 in (iii), the required particular solution is $= \log |x| - 1$ $\Rightarrow y (\log |x| - 1) = -2x \Rightarrow y$ y =

A homogeneous differential equation of the form

16. Choose the correct answer:

can be solved by making the substitution:

(A) y = vx (B) v = yx (C) x = vy (D) x = v Sol. We know that a

 \therefore Option (C) is the correct answer.

17. Which of the following is a homogeneous differential equation?

(A) (4x + 6y + 5) dy - (3y + 2x + 4) dx = 0

- (B) $(xy) dx (x^3 + y^3) dy = 0$ (C) $(x^3 + 2y^2) dx + 2xy dy = 0$ (D) $y^2 dx + (x^2 xy y^2) dy = 0$
- Sol. Out of the four given options; option (D) is the only option in which all coefficients of dx and dy are of same degree (here 2). It may be noted that xy is a term of second degree.

Hence differential equation in option (D) is Homogeneous differential equation.

48

Class 12 Chapter 9 - Differential Equations

Exercise 9.6

In each of the following differential equations given in Exercises 1 to 4, find the general solution:

1.

+ 2y = sin x

Sol. The given differential equation is

 $+ 2y = \sin x$ | Standard form of linear differential equation

Comparing with

```
\begin{array}{c} + \mathrm{Py} = \mathrm{Q}, \, \mathrm{we} \, \mathrm{have} \, \mathrm{P} = 2 \, \mathrm{and} \, \mathrm{Q} = \sin x \\ & \int \\ \mathrm{dx} = \mathrm{g}_{2x} \\ \mathrm{dx} = 2 \, \int \\ \mathrm{dx} = 2 \, \mathrm{g}_{2x} \\ \mathrm{dx} = 2 \, \mathrm{g}_{2x} \\ \mathrm{Solution} \ \mathrm{is} \\ \mathrm{g}(\mathrm{LF}) \end{array}
```

```
\int_{a}^{ax = \int_{a}^{ax = 2} \int_{a}^{ax = 2} \int_{y(I.F.)}^{y(I.F.)} \int_{dx = 2x I.F.}^{y(I.F.)} \int_{y(I.F.)}^{y(I.F.)} dx
= \int_{ax = 2x I.F.}^{ax = 2x I.F.} \int_{y(I.F.)}^{y(I.F.)} \int_{dx = 2x I.F.}^{y(I.F.)} \int_{dx =
```

I II

Again applying Product Rule,

 $v e^{2x} =$

$$\begin{split} I &= -e^{2x}\cos x + 2 \qquad \square \square \square \square \square \implies I = -e^{2x}\cos x + 2 \\ 2e^{2x}\sin x - 4 \int \text{ or } I = e^{2x}(-\cos x + 2\sin x) - 4I \\ \text{Transposing } 5I &= e^{2x}(2\sin x - \cos x) \end{split}$$

 $(2\sin x - \cos x)$

∴ I =

Putting this value of I in (i), the required solution is (2 $\sin x - \cos x$) + c

Dividing every term by e^{2x} , $y = (2 \sin x - \cos x) +$

or y = $(2 \sin x - \cos x) + c e^{-2x}$ which is the required general solution.

> 49 Class 12 Chapter 9 - Differential Equations

2.

 $+ 3y = e^{-2x}$

Sol. The given differential equation is

 $+ 3y = e^{-2x}$

| Standard form of linear differential equation

Comparing with

+ Py = Q, we have P = 3 and Q = e^{-2x} $\int = e_{3x}$ $dx = 3 \int$ $dx = \int$ _{\$} Solution is \$٢ dx = 3x I.F. = y(I.F.) $= \int (I.F.) dx + c$ or y $e^{3x} =$ $e^{3x} dx + c \text{ or } =^{-+} \int dx + c = \int$ x ſ + c $dx + c \text{ or } y e^{3x} = e$ Dividing every term by e^{3x}, y = or $y = e^{-2x} + ce_{-3x}$ + which is the required general solution. 3.

 $+ = x^{2}$

Sol. The given differential equation is

It is of the form

$$+ Py = Q \text{ Comparing P}$$

$$=, Q = x^{2}$$

$$dx = \int dx = \log x \therefore \text{ I.F. =} \int e^{\log x} = x$$
The general solution is $y(\text{I.F.}) = \int (\text{I.F.}) dx + c$

$$dx + c = \int (\sec x) y = dx + c \text{ or } xy = + c.$$

$$dx + c \text{ or } xy = + c.$$

Sol. The given differential equation is

 $+ (\sec x) y = \tan x$

 $+ = x^{2}$

It is of the form

Comparing $P = \sec x$, $Q = \tan x$ $+\tan x$ = sec x \$۱ $dx = \int I.F. =$ + tan x $dx = \log(\sec x + \int = e^{\log(\sec x)}$ tan x) The general solution is $y(I.F.) = f^+(I.F.) dx + c$ dx $(\sec x + \tan x) dx + c =$ or $v (\sec x + \tan x) =$ Class 12 Chapter 9 - Differential + c = **+** -Equations $dx + c = \sec x + \tan x - x + c$ 50 or $y (\sec x + \tan x) = \sec x + \tan x - x + c$. For each of the following differential equations given in Exercises 5 to 8, find the general solution: пп + y = tan x5. cos² X Sol. The given differential Dividing throughout by \cos^2 equation is $\cos^2 x$ x to make the coefficient of unity, + y = tan x $+(\sec^2 x) v = \sec^2 x$ tan x It is of the form + Py = Q.Comparing $P = \sec^2 x$, $Q = \sec^2 x \tan x$

 $dx = \int dx = \tan x \text{ I.F.} = \text{s} \quad \int = e_{\tan x}$

\$∫

The general solution is $y(I.F.) = f^+(I.F.) dx + c$

or ye^{tan x} = $\int_{-\infty}^{+\infty} dx + c \dots (i)$ Put tan x = t. Differentiating sec² x dx = dt $\therefore \int_{a}^{tan \ x} e_{tan \ x} dx = \int_{a}^{I \ I \ I}$ $e^{t} dt$ Applying integration by Product Rule, ^t_[.e ${}^{t}dt = t \cdot e$ ${}^{t} - e$ ${}^{t} = (t - 1) e$ = t . e $t = (\tan x - 1) e^{\tan x}$ Putting this value in eqn. (i), $ye^{\tan x} = (\tan x - 1)e^{\tan x} + c$ Dividing every term by e^{tan x}, $y = (\tan x - 1) + ce^{-\tan x}$ which is the required general solution. 6. x + 2y = $x_{2\log x}$ Sol. The given differential equation is x $+2y = x_2 \log x$ Dividing every term by x ,- # $+ y = x \log x$ log x^{\$}[It is of the form + Py = Q. $\int dx = 2 \log x \int = e_{2}$ Comparing P = , Q = x dx = 2 $e^{\log f(x)} = f(x)$ $\log x = \log x^2 = x^2$. I.F. =^{\$} The general solution is $y(I.F.) = f^+(I.F.) dx + c$ or $yx^2 = \int x_2 dx + c = \int x_3 dx + c$ 51 Class 12 Chapter 9 -

Differential Equations

 $\int dx + c$ $= \log x$. $-\int dx + c = \log x - \log x - \log x$ (or $yx^2 =$ log x – Dividing by x^2 , y = (. (+ c. **y** = $(4 \log x - 1) +$ $+ y = \log x$

7. x log x

Sol. The given differential equation $y = \log x$ is x log x

Dividing every term by x log x to make the coefficient of

unity,

y =

Comparing with + Py = Q, we have

P =

+

and Q =

dx =\$٢ $\int dx =$ $\int dx = \log (\log x)$

, o o o o o o <mark>گ ۱ گ</mark> __∫ log x ∵∫ or y log x dx + cI.F. =^{\$} $\int = e^{\log(\log x)}$ The general solution is $= \log x$

 $dx = 2^{-1}$ y(I.F.) = +dx + cIIIſ Applying Product Rule of integration, --00 $\frac{1}{1}$ = 2 = 2- 0 0 $= (1 + \log x) + c.$ + - $\Box \Box + c \text{ or } y \log x$ _____+ c 8. $(1 + x^2) dy + 2xy dx = \cot x dx (x \neq 0)$ Sol. The given differential equation is $(1 + x^2) dy + 2xy dx = \cot x$ dx Dividing every term by dx, $(1 + x^2)$ $+2xy = \cot x$ Dividing every term by $(1 + x^2)$ to make coefficient of unity, 52 Class 12 Chapter 9 - Differential Equations

+ y =

Comparing with

+

P =+ and Q =+ ___^{′ _ _}__ + $\int dx = \log |1 + x^2|$ dx = ∵ ſ \$٢ $= \log (1 + x^{2}) \left[\begin{array}{c} \cdot 1 + x^{2} > 0 \\ \cdot 1 + x^{2} \right] = 1 + x^{2} = 1 + x^{2} = 1 + x^{2} = 1 + x^{2}$ I.F. =^{\$} dx + cSolution is y(I.F.) = * & · ∫ $\int (1 + x^2) dx + c$ \Rightarrow y(1 + x²) = $\Rightarrow y(1 + x^{2}) = \int^{+} c \Rightarrow y(1 + x_{2}) = \log |\sin x| + c$

Dividing by $1 + x^2$, y =or $y = (1 + x^2)^{-1}\log|\sin x| + c (1 + x^2)^{-1}$ which is the required general solution. For each of the differential equations in Exercises 9 to 12, find the general solution:

= 0, (x ≠ 0)

9. x

+ y – x + xy cot x

Sol. The given differential equation is

 $x + y + xy \cot$ + y - x + xy x = x $\cot x = 0$ $\Rightarrow x \Rightarrow x + (1 + x \cot x) y = x$

unity, + $\mathbf{v} = \mathbf{1}$ Comparing with + Py = Q, we have + and Q = 1 P =dx =0+00 []]□□∫ dx = $\begin{bmatrix} 0 + 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} dx$ = ۲ $= \log x + \log \sin x = \log (x \sin x) 53$ Class 12 Chapter 9 -**Differential Equations** I.F. =^{\$} $\int = e^{\log(x \sin x)} = x \sin x$ Solution is $y(I.F.) = {* \& . \int}$ $\operatorname{or} y(x \sin x) = \int$ dx + cΙIΙ $\Box \prod_{dx + c} \iiint \Rightarrow y(x \sin x) = x(-\cos x) - = -x \cos x + \int^{+c} \int^{$

which is the required general

Dividing by $x \sin x$, y =

+

10. (x + y)

= 1 Sol. The given differential equation is

(x + y)

or $y = -\cot x + +$ solution.

 $= 1 \Rightarrow dx = (x + y) dy$

 $iii = x + y \Rightarrow$

-x = y

Standard form of linear differential equation

Comparing with

ſ

$$+$$
 Px = Q, we have, P = -1 and Q = y

$$\int_{a}^{a} \int_{a}^{b} \int_{a$$